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Abstract

Dust growth in protoplanetary disks is an important process in both planetesimals forma-
tion and the evolution of protoplanetary disk themselves. Collisions between dust grains can
result in not only their coalescence but also fragmentation. The collisional fragmentation is
able to prevent planetesimal formation. In this paper, we examine the effects of collsional
fragmentation in the process of dust growth in laminar disks and turbulent disks. Frag-
mentation occurs at mutual collisions of grains, if the collisional velocity is larger than a
certain critical velocity determined by the strength of grains. If we consider compact grains
consisting of sub-micron monomers, the critical velocity is roughly estimated to be ~3 m/s
for H,O ice grains and ~0.3 m/s for silicate grains.

Next we examine the collisional velocity analytically and numerically. The collisional
velocity increases as dust grains grow as long as they are coupled with the gas disk. If the
collisional velocity attains to the above critical velocity, collisional fragmentation prevents
further growth. We estimate such critical dust size for fragmentation for laminar disks and
turbulent disks. In laminar disks, the collisional velocity depends on the height z. It is
given by the vertical settling velocity above the midplane and by the radial velocity near
the midplane. Since the collisional velocity is small at the midplane, compared with that at
a high level, grains can grow larger at the midplane than above it. The collisional velocity
at the midplane given by the radial velocity attains to the maximum value at a certain
grain size. The maximum collisional velocity is given by 20-50 m/s, depending on the
disk temperature. This maximum velocity is larger than the above critical velocity. Thus,
collisional fragmentation limits dust growth at the whole disk.

We also consider the case of turbulent disk, assuming homogeneous and isotropic tur-

bulence and adopting the so-called a-model. There are two effects of turbulence on the dust



growth and settling. One is the enhancement of the collisional velocity due to turbulent mo-
tion. The other one is the vertical diffusion of dust grains. These effects of disk turbulence
prevent settling and growth of dust grains. As disk turbulence damps, dust grains would
gradually settle and grow.

Since collisional fragmentation confines the dust size, it also confines the relative velocity
of dust grains to the disk gas. As a result, the migration velocity of grains to the disk gas
is limited to the critical velocity for fragmentation. There is some uncetainty in the critical

velocity Viag. To fix it, further investigation on dust structure is needed.
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1 Introduction

Planetary systems are formed in protoplanetary disks. Especially, the solid bodies like
planets and asteroids are made from dust grains in protoplanetary disks. Dust grains grow
through mutual collisions, gradually settle to the midplane of a disk and forms a dense dust
layer at the midplane (e.g., Safronov 1969, Nakagawa et al. 1981). Then planetesimals
would be formed in the dust layer through gravitational instability (Goldreich and Ward
1973) or simple coalescence (Weidenschilling and Cuzzi 1993). Then planets are formed
from planetesimals through mutual collisions. Collisions between dust grains result in not
only their coalescence but also fragmentation. If collisional fragmentation occur in a major
part of collisions, it would prevent planetesimal formation. Therefore, it is important to
estimate the effects of collsional fragmentation in the process of dust growth.

Recent observations with high resolution at various wavelengths gave us much informa-
tion of dust grains in protoplanetary disks. Testi et al. (2003) observed a protoplanetary
disk CQ Tauri with mm observations. They show dust grains grown to sizes as large as a few
centimeters. van Boekel et al. (2003) observed some protoplanetary disks with mid-infrared
spectroscopy. They show the evidence for the existence of small grains at surface layer in
protoplanetary disks. Their typical samples are 10° yr old. Dullemond and Dominik (2005)
examined dust coagulation in turbulent disks through the numerical calculation. According
to their simulation of dust growth without fragmentation, the small grains are depleted on a
time scale that is much shorter than time scale is consistent with the observations. They in-
sist that collisional fragmentation is plausible mechanism to replenish small grains, assuming
a small critical collisional velocity for fragmentation of 0.1 m/s.

Dust growth in protoplanetary disks have been investigated by many authors for both
laminar disks (e.g., Safronov 1969; Weidenschilling 1980, 1997; Nakagawa et al. 1981, 1986)
and turbulent disks (e.g., Weidenschilling 1984; Mizuno et al. 1988; Schmitt et al. 1997).

For example, Nakagawa et al. (1981) examined the growth of dust grains in the cource of
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dust settling solving the so-called coagulation equation. Weidenschilling (1984) examined the
evolution of dust grains in turbulent disks through numerical calculation. In his calculation,
the effects of collisional fragmentation is also included, through he assumed very strong tur-
bulence with a typical of the sound speed. According to his result, the dust size distribution
is in a steady state as a result of the equilibrium between grain growth and fragmentation.
Although the effects of collisional fragmenation is also included in some other papers, they
set the critical velocity for fragmentation to be one assumed value. Thus, it is not clear how
the effect of collisional fragmentation on dust growth depends on the critical velocity.

Experimental and the theoretical studies on dust collisions done by many author re-
cently. Thus, the quantitative investigation becomes possible. In protoplanetary disks,
sub-micron interstellar particles grow to much larger dust grains through mutual collisions.
The fragmentation occurs at mutual collisions of grains, if the internal pressure enhanced
by the collision is larger than the tensile strength of the grains. This condition is satisfied
for collisions with sufficiently high relative velocities. The critical velocity for fragmenta-
tion depends on the tensile strength. The tensile strength of dust grains is governed by
an adhesion force between two sub-micron interstellar particles (or monomers) in contact.
To describe the adhesion force between the monomers the model of Johnson, Kendall and
Roberts (1971) (the so-called JKR model) is used in several papers (Chokshi et al. 1993,
Dominik & Tielens 1995, Dominik & Tielens 1996, Dominik & Tielens 1997). Dominik and
Tielens (1997) performed numerical simulations of aggregate collision, assuming the JKR
model for interparticle forces and obtained the critical velocity for fragmentation. According
to their results, the critical velocity is about 10 m/s for H,O ice grains. On the other hand,
Blum and Wurm (2000) performed collision experiments for SiO; grains in microgravity en-
vironment. They found that when collisional velocity is larger than 1.2 m/s, dust grains do
not grow, which is consistent with the theoretical result by Dominik and Tilens (1997). We

will further describe the criterion for collisional fragmentation in Chapter 2 in detail.
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In this paper, we clarify the effects of collisional fragmentation on dust growth in laminar
disks or turbulent disks. The outcomes of collisions are governed by collisional velocities
as mentioned above. To examine the effects of collisional fragmentation, we evaluate the
collisional velocity in the cource of the dust growth in laminar disks and discuss the dust
growth including collsional fragmentation. We see that collisional fragmentation is effective in
laminar disks only inner region (r < 1AU). However, after settling, collisional fragmentation
occurs at midplane of the whole disk and the maximum dust size limited by fragmentation.
We also examine tha case of turbulent disks.

In the gaseous disks, the gas drag force causes dust inward migration (e.g., Whipple
1972, Adachi et al. 1976). The dust radial migration changes the dust surface density, which
governs the process of planetesimal formation. Thus, dust migration is important in the
formation of planetesimals. Furthermore, some authors suggested that dust migration in
anticyclonic eddies enhances that dust density and could even trigger a local gravitational
instability (e.g., Barge and Sommeria 1995). In these migration process of dust grains, the
migration velocity of dust grains increases with the dust size. Then collisional fragmentation
can also confined the migration velocity of dust grains by regulating their size. We will
discuss this effect of fragmentation on dust migration.

In the next section we describe the criterion for collisional fragmentation. In Section 3
and 4 we examine the collisional velocity of dust grains and clarify the effect of fragmentation
on dust growth in laminar disks and turbulent disks. In Section 5 we summarised our results
and also discuss the effect of fragmentation on the radial migration of dust grains and the

motion of dust grains trapped in turbulent eddies.



2 The criterion for collisional fragmentation

2.1 Tensile strength of dust grains

In protoplanetary disks, sub-micron interstellar particles grow to much larger dust grains
through mutual collisions. The fragmentation occurs at the mutual collisions of grains, if the
internal pressure enhanced by the collision is larger than the tensile strength of the grains.
This collisional fragmentation would prevent the dust growth. The strength of dust grains is
governed by an adhesion force between two sub-micrion interstellar particles (or monomers)
in contact. To describe the adhesion force between the monomers the model of Johnson,
Kendall and Roberts (1971) (the so-called JKR model) is used in many papers (Chokshi et
al. 1993, Dominik and Tielens 1995, Dominik and Tielens 1996, Dominik and Tielens 1997).

The JKR model is based on an earlier model by Hertz (1882). He examined deforma-
tion of two elastic solid spheres in contact under an external load but ignored interparticle
attractive forces. The deformation results in an repulsive elastic force between the spheres,
which is balanced with the external load. On the other hand, Johnson et al. (1971) took
account of the attractive force due to the surface tension. In the JKR model, the net force
between two particles in contact is given by the difference between the attractive force due
to the surface tension and the repulsive elastic ones. The net force between two particles is
dependent on the distance of the centers of them. It vanishes for an equilibrium distance
that balances the attractive force with the repulsive elastic one. For a larger interparticle
distance, the net force becomes attractive. Its magnitude increases with the displacement
from the equilibrium distance an attains to a maximum value for a critical displacement.

This maximum adhesion force between two spherical particles is given in JKR model by

3

Fsep = 7@07 5 (21)

where ag is the radius of the particle and ~ is the surface energy of its unit area. For a

external load larger than Fip, the bond between the particles is cut and the interparicle
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force vanishes. The bond energy between two particles is roughly given by ~ F..,0., where
d. is the critical displacement. Using this JKR model and assuming compact dust grains
(or aggregates) consisted of sub-micron monomers, we can roughly estimate their tensile

strength as (Sirono and Greenberg 2000)

7Ta(2) 2ag

Y ~

(2.2)

We set ap = 0.1um as a typical interstellar dust size. For HyO grains, their tensile strength
is estimated to be 2 x 10° Pa and for SiO, grains, it is 4 x 10° Pa. The material parameters
we used employed are listed in Table 1. For very porous grains the tensile strength would
be reduced much.

The JKR model has been checked experimentally. Heim et al. (1999) measured the
adhesion force between two micron-sized spherical grains (SiOz). Their result is consistent
with JKR model. Blum and Scrapler (2004) measured the tensile strength of high-porosity
dust aggregates with the filling factor of 0.2. Their samples are SiO; with monomer size
ap = 0.76 ym and surface energy v = 0.014 J/m?. The obtained tensile strength is ~1000 Pa
and it is much smaller than the analytical estimated value ~ 30000 Pa. This reduction in

the tensile strength would be due to the high porosity of the aggregate.

2.2 The critical velocity for fragmentation

The internal pressure enhanced by a collision increases with the collisional velocity
between the grains. If the collisional velocity is larger than a critical velocity and the internal
pressure becomes larger than the tensile strength at the collision, the fragmentation occurs.
To evaluate the critical velocity, we first estimate the internal pressure at a collision. The
pressure at a collision P,y is approximately given by ~ pocmatVeol, Where pg is the material
density of the monomers, ¢pat is the sound speed (in other words, the velocity with which

the information propagates in dust grains) and V.o is the collisional velocity. The sound
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speed cpae 1s estimated as follows. The interparticle force between two particles in contact
is approximately given by the restoring force with the spring constant k ~ F.,/d. where
d. is the critical displacement in the JKR model. The critical displacement 4, is given by
2.55[(1 — v)*y%ag/ E*]'/3, where v and E are Poisson’s ratio and Young’s modulus of the
monomer. After two grains collide with each other, the information propagates from contact
point through the inside of the grains and each monomer stops in turn. The time required

for each monomer to stop, At, is given by

mo ,006l05c
At ~ (=~ 2.3
k Y 2 ( )

where mg is the monomer mass. During the interval At¢, the information propagate by a

distance of the monomer size. Then, the sound speed ¢yt 1s given by

(273} YCLO
i~ D (20 2.4
Cmat At ,005c ( )

Using this expression ¢pa¢, we obtain the pressure enhanced at a collision P, as

poaoY
de

Pcol ~ ‘/COI . (25)

Finally, balancing the pressure P, with the strength Y., we have for the critical velocity
‘/frag:

‘/frag ~ - - (26)

The obtained critical velocity is independent of the dust size. The material parameters are
listed in Table 1. If we set ap = 0.1pum (a typical interstellar dust size). The critical velocity
is 3 m/s for HyO grains and 0.3 m/s for SiO; grains. Chokshi et al. (1993) also estimated
the critical velocity for collisional fragmentation in another way. They assumed that the
collisional fragmentation occurs when the kinetic energy per a monomer, (1/2)mgV72,, is
larger than the bond energy between two monomers, ~ F.,0. Their critical velocity in this

way almost agrees with equation (2.6).



Table 1: Material parameters, tensile strengths and critical velocities.

material | v 1D v Prmat 5£a) Y Virag
(3/m?) | (Pa) (eg/m) | () | (Pa) | ()

H,0 0.100 | 0.70 x 10° | 0.25 | 1000 5.98 | 2 x 10°% | 3

Si0, 0.025 | 0.54 x 10'° | 0.17 | 2600 0.69 | 4 < 10° | 0.3

(@)§ = 2.55[(1 — v)*y%ao/ E?]'/® (Chokshi et al. 1993)

Dominik and Tielens (1997) performed numerical simulation of aggregate collision, as-
suming the JKR model for interparticle forces and also examined the critical velocity. Ac-
cording to their results, the critical velocity is ~ 10 m/s for HyO grains. They considered
that when the collisional energy 1(1/m; + 1/m2)V2| equals the energy required to break
all contact n.F.d., Loss of monomer starts (fragmention occurs). Here, my and my are the
mass of aggregate, and n. is the total number of contacts between monomers. Dominik and
Tielens considered that the collisional energy is distributed over all contacts. On the other
hand, Chokshi et al. considered that collisional fragmentation occurs when the collisional
energy is larger than the energy required to break one contact. The critical velocity of Do-
minik and Tielens is about n. times as large as one of Chokshi et al. Furthermore, Blum
and Wurm (2000) performed the collision experiments for SiOy grains in microgravity envi-
ronment. When collisional velocity is larger than 1.2 m/s, dust grains do not grow. These
results of the previous studies are almost consistent with the our estimation.

In our theoretical estimation, it is assumed that dust grains are compact. However, dust
grains may have porous structure in protoplanetary disks and the tensile strength of dust
grains may be much smaller than our estimation. Then, at low-velocity collision, collisional
fragmentation may also occur. In the numerical simulation by Dominik and Tielens (1997)
and the experiments by Blum and Wurm (2000), they treat porous aggregates but only small

ones. The tensile strength of much larger porous grains may be smaller than their results.
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For example, tensile strength of high-prosity dust aggregates is ~1000 Pa (Blum and Scréapler
2004) and it is much smaller than the analytical estimated value of 10* Pa. For such dust

aggregates, the critical velocity is ~ 0.01 m/s.

3 Motion of dust grains and the collisional velocity in

protoplanetary disks

In this chapter, we examine the collisional velocity at a collision between dust grains
in protoplanetary disks. Dust grains we consider are wel coupled to disk gas. Thus, the
collisional velocities are approximately given by the relative velocities of dust grains to gas.
The relative velocities of dust grains and gas are determined by the balance between the
gravitational force from the central star and the gas drag force. It is assumed that the
velocities of dust grains and gas become the terminal velocities. We also consider the motion

of dust grains in turbulent disks as well as that in laminar disks.

3.1 Disk model

We consider a passive protoplanetary disk around a solar-type central star with 1 M.
To describe the disk, we use a cylindrical coordinate system (r, ¢, z) of which the origin is
located at the central star. The z-axis coincides with the rotation axis of the disk. We
assume that the disk is isothermal in the vertical direction (i.e., in the z-direction).

Under this assumption, the vertical density distribution p,(z) of the gas component is

given in the hydrostatic equilibrium by (Hayashi 1981)

Y 2? (3.1)
Pg = \/%H exp 2 []2 ” .
where Y, is the surface density of disk gas and H is the gas scale height of the disk given

by ¢s/Q. Furthermore, Qp = (GM./r®)'/? is the Keplerian angular velocity and ¢, =
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(kBT//,LmM)I/2 is the isothermal sound speed, where G, kg, and m, are the gravitational

constant, Boltzmann’s constant, and the atomic mass unit, respectively, and T" and u are
the disk temperature and the mean molecular weight, respectively. We set p = 2.34.

As for the surface density distribution of gaseous disks, according to Hayashi (1981) we

adopt a power-law distribution of

%) = S (57) - (3.2)
where ¥ is the gas surface density at 1 AU. In the standard case of this study, we adopt the
values of the minimum mass solar nebula (MMSN;Hayashi 1981), that is, ¥,o = 17000 kg/m?.
We assume that dust grains is consisted of HyO and organics. The dust-to-gas ratio (4 and the
solid material density p,,q.¢ are set to be 0.014 and 1380 kg/m?, respectively in the standard
case. These values are consistent with the solar abundance when H,O ice is included in
grains (Pollack et al.1994).

In this study, we assume that the disk temperature profile is given by (Kusaka et al.

1970)

0T = - [i& A (mnH - 1)] , (3.3)
r

C 87r2 |37 r dlnr

where, L., T,, R, are the luminosity, the surface temperature and the radius of the central

star. At H < R.(near the central star),

T:(%J%<%§%ﬂ. (3.4)

On the other hand, at H > R.(far the central star),

MM NT (RN
re (2 (2)' o5

In the standard case we consider L, = 3.83 x 102® W, T\, = 5780 K and R, = 6.96 x 10® m,

the temperature profile is given by

69.9 (2) * K (H < R.)

99.4 (L) TK (H> R.).

1AU
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3.2 Gas drag force

When dust grains move against the disk gas, they receive the gas drag force. The gas
drag force governs the dust motion. Adachi et al. (1976) examined the gas drag effects on
solid bodies in protoplanetary disks. For a spherical grain that is embedded in gas, the gas

drag force is given by

1
FD = §CD7TG2,0g|Vre1|Vrel (37)
= —mAp,Vya (3:8)
with
3|‘/—1f'el|
A= C 3.9
8pmata b ( )

where Cp is the non-dimensional drag coefficient and V¢ is the relative velocity of the dust
grain to the disk gas. Here, @ and m are the radius and the mass of the grain, respectively.

The drag coefficient C'p is given by

CDQ

+ w, (3.10)

240 _1+3M _1+(2—w)./\/l
R 10+ R 8 1+ M

where M is the Mach number, R is the Reynolds number and w is the correctional term.

Here, the Mach number M and the Reynolds number R are defined by

_ |Vre1|

M (3.11)
(&
and
6a|Vyie
r =% ‘|, (3.12)
lgct

respectively, where [, is the mean free path of gas molecules, ¢; is the thermal velocity.
The mean free path is given by I, = um,/(py0mao) and the thermal velocity is given by

¢y = 4/ /8¢s. The correctional term w is ~ 0.4 at R <2 x 10°, and ~ 0.2 at R > 2 x 10°.
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For R <« 1 and M < 1, this case is divided further into two cases, depeneding on the

values of the Knudsen number K(= a/l, = R/6M). For K > 2 (a < 21;), Cp and A are

given by

4o (3.13)

Cp=——
P 3M pmata ’

respectively. This case corresponds to Epstein’s law. On the other hand, for K < % (a > %lg),

Cp and A are given by

24 3L, ¢
O — A= g 3.14
b= R 2pmara? ( )

respectively. This case corresponds to Stokes’ law. In these two cases, A is independent on
Viel. Therefore, as an expression of the gas drag force, the equation (3.8) is more useful than
equation (3.7). In the case of a large Reynolds number R > 100, on the other hand, Cp is
given by

0.5 (M<1)
Cp = (3.15)

2 (M >1)

In this case, therefore, the equation (3.7) is more useful.

3.3 The motion of dust grains in laminar disks

Nakagawa et al. (1986) derived the equation of motion of dust grains and gas in laminar
disks, assuming the terminal velocities of dust grains. They considered equal-sized grain.
Tanaka et al. (2005) derived the equation of motion of dust grains and gas when grains have
a size distribution. We derived, along the line of Tanaka et al. (2005), the velocities of dust
grains and gas. When grains have a size distribution, the equations of motion for gas and

dust grains are given by

a—U—I—[U-V]U: —Ap,[U —u] — M. (3.16)
ot Ed&

Jdu G M., 1

e +[u-Vju=— / Amn(m)[u— Uldm — PE X EVPg ) (3.17)
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where U is the dust velocity and u is the gas velocity. The gas pressure P, is given by ¢2p,.
In equation (3.17), n(m)dm denotes the number density of grains with masses between m
and m + dm at a height z. Thus, n(m) describes the distribution of grains with respect to m
(or the size a). We introduce a differentially rotating coordinate system with the Keplerian
velocity. Instead of U and u, we use the velocities V.= U — rQe,; and v =u — rQle, in the
rotational frame. In the rotational frame, the equation on motion is rewritten by

v, oV, V,oV,

V2
Ly e Ve Ve OV Yy
r

= —A,Og(‘/r — U,,) + QQkV(b (318)

ot 0 r do © 0z r
Ve OV Vyavy 9V, ViV 1
o TV Y TV T T A ) g (3.19)

OV. OV, VOV, OV

_ B 2
ot +V or + r d¢ +V Jz Apy(Ve = v) + Yz, (3.20)
and
dv, dv, V4 0v, dv, Ufs B 1 0P
5TV gtV = [ Al = Vadm 42—
(3.21)
8% 8% V¢ 8% 8% UrUg . / 1 1 8P
R Er i O L e
(3.22)
Jv, dv, Vyov, v, 5 1 0P
(3.23)

Since V and v are much smaller than the Keplerian velocity, we can neglect the second-order

o : : .0
terms of these velocities in the equations of the motion. Then, setting Erie 0 (steady state)

and — = 0 (axial symmetry), we obtain the velocities of gas and grains in the rotating

dp

cylindrical coordinates. The velocities of dust grains are given by

[, + 2lMvy
V=" - ° 3.24
1412 ( )
—Tv, + 2F2v¢
V= —r—— 3.25
1
V.= 0. — =—uy (3.26)

I'r
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and the velocity of gas is given by

v, = ﬁnvk (3.27)
Vg = —%nvk (3.28)
where
I'= % (3.29)
A = / : ikrz mZim)dm (3.30)
1 P
n = —m%—r : (3.31)
Thus, the relative velocity between dust grains and gas is given by
V, — v, = %ﬁf% (3.32)
V) — vy = H (3.33)
V,—v, = —%;vk : (3.34)

When the dust density is much smaller than the density of gas mn(m)/p, < 1, Ay is ~ 0.

Then, the relative velocity between dust grains and gas is given by

2r

V,,—v,,:—l_l_rznvk (3.35)
1

Vo = Vo = T (3.36)
1z

V,.—v, = —=—v; . 3.37

v TV ( )

The relative velocity is governed by I',n. We use equations (3.35), (3.36) and (3.37) as the
relative velocity between dust grains and gas.

The non-dimensional parameter 1/I" means that the frictional time for gas drag nor-
malized by the Keplerian period. For small grains, I' is large and the velocity of such grains

nearly equal the velocity of gas. The non-dimensional parameter I' with similar uses as A
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and Cp. For Epstein’s law, I' is given by

pgA Gt Py 2 X, z?
ro Pt _ _ = — _ 3.38
Qe Q@ pmar T Pmara P ( 2H? (3:38)

And for Stokes’ law, I' is given by

po e 3 e py 18 pmy I (3.39)
Qk 2 QkGQ Pmat T PmatOcol Cl2

In these cases, I' is independent of the velocity. In the case where R > 100, I' is given by

I = %p_g Vrel
8 Qk Pmat@

(3.40)

Therefore, I' depends on the velocity. For V ~ V. (V, > V., V,), the equations of motion of

dust grains are given by

VraVZ_I_VZaVZ __3CD Py

_ V. —0.)? 4+ 02z 3.41
or 0z 8 pmata( va)" + Oz ( )

At high altitude, that assuming (V' ~ V.) is valid. We compare the each terms in equation
(3.41). Since V., Vy, V. are much smaller than the Keplerian velocity, the dominant term is
the second term of the right hand side Q7z. We compare the second-order terms. In the left

hand side, the first term is ~ V.V, /r and the second term is ~ V?/H. The ratio of the first

term to the second term is

V.o VH V. \?
Co 10—2i< ) 3.49
T A VNG (3.42)

Here, we assume Vi >~ V, (V. > V., V,). Thus, V. /V, is much smaller than unity. Therefore,
the second term is much larger than the first term. At z < H the first term of the right
hand side (gas drag force) is ~ 1/(pmar@)(X,/H)V?2. The ratio of the second term of the left

hand side to the first term of the right hand side is given by

‘/Zaa‘;z Pmatd 0 1 < a > < r >% (3 43)
Xp_ts (Y, _yp,)2 %, “\lm/ \1AU/ '
8  pmata

Thus, @ <1 m at r < 1 AU the first term of the right hand side is much larger than the

second term of the left hand side. Then, the equation (3.41) is written as

(Vo —w.)? = Q= (3.44)
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Equation of motion is written as (3.44) for large grains at inner disk. Because at inner disk,
for large grains the Reynolds number is large, our approximation equation (3.44) is valid.

Thus, when the Reynolds number is large, the relative velocity V, — v, is given by

1 8 Pmatd 2 22
‘/z — Uy — — 2m)a - s - 3.45
v = =M 5e s O <4H2>c (3.45)

The parameter nV}; means the difference between the gas velocity and the Kepler velocity

due to the pressure gradient force. From equation (3.4) and (3.2) n is given by

2
Cs _
n=(p+3+2q) (—0> racs (3.46)

Vko

respectively, where p and ¢ are the power law index of radial distribution of temperature and
gas density. Here, ¢y, vio are sound speed and Kepler velocity at 1 AU. 5 only depends on

the distance from the central star. In the standard case, nvy is given by

20.3 <1£U>_Zm/s (H < R.)
nvE = (3.47)

19.3 (£ )ﬁm/s (> R.) .

1AU

On the other hand, in Hayashi model the temperture profile is given by 7' = 280(r/1AU)Y/2 K
(Hayashi et al. 1981). In such a case, nuy is given by 50 m/s. The velocity of Hayashi model
is about three times greater than the velocity of Kusaka model (standard case).

We show the velocities of dust grains in Figure 1. At high altitude, the z-component
(the solid line) of the relative velocity between dust grains and gas is much larger than other
components. While at midplane the r-component (the dashed line) of the relative velocity

is much larger than other components. Thus, the relative velocity is written as follows:

At high altitude

Viel & (‘/z - Uz)ez = — 5 ULy (348)
['r

At midplane, for I' > 1

Via >~ (V, —v,.)e, = — ke (3.49)
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Figure 1: The height dependence of the relative velocity between dust and gas at r
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At midplane, for I' <1

Vil > (Vo —v4)ep = —nuies (3.50)

The height where V., — v, =V, — v, is given by

212
f= (3.51)

At z < [21?/(1 4 ['%)]nr, the velocities of dust grains is given by V' = V.. The radial velocity
V, — v, is almost independent of the height z at » < H. Thus, the velocity Vi is almost
independent of the height z at = < H.

The collisional velocities are roughly given by the relative velocities between dust grains
and gas. In collision between small dust grain and large dust grain, the collisional velocity
is determined by the velocity of the larger dust grain. On the other hand, the collisional
velocities vanish in collisions between equal-sized dust grains. However, such collisions hardly
occur. Thus, collisional velocities are the velocities of dust grains. We use the equation (3.35),
(3.36), (3.37) and (3.45) as the collisional velocity in laminar disk.

Figure 2 shows collisional velocities at r = 1 AU, 2 = H. As the dust size becomes
larger, the collisional velocity becomes large. Thus, as dust grains grow, dust grains have the
larger velocity. When collisional velocity is larger than the critical velocity Viag, collisional
fragmentation occurs. The critical velocity is 1-10 m/s because dust grains are composed of
H,0 ice at r = 1 AU (the belt in Figure 2). The dust grains with ¢ > 1 — 10 mm has the
collisional velocity (V, — v,) that is larger than the critical velocity. For such dust grains
collisional fragmentation occurs and the growth of dust grains are prevented. Thus, the
maximum dust size is ~ 1 — 10 mm at » =1 AU, » = H. The maximum dust size dfag 15

defined by V. — v, = Vjag. For Epstein’s law the maximum dust size agag 1s given by

2 %), Viag H 2
g = g Mrag 77 - . 3.52
o = 22 Yo By (2 (3.52)
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Figure 3: The size dependence of the relative velocity between dust and gas at r = 1AU, 2 =0

(midplane). The solid line and the dashed line are V, — v,, V; — vy, respectively. At z =0

the vertical collisional velocity is vanished (V, = 0). The hatched region shows the critical

velocity Viag.
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Figure 4: The maximum dust size @fag for Viae = 1 m/s at r= 1AU. The solid line and the

dashed line are at z = H and z = 0, respectively.



19

For Stokes’ law the maximum dust size dgag is given by

18 g pmy, Vieag H
e = | — _— 3.53
e ( T ) \/pmato-col Qk z ( )

The maximum dust size is determined by @, (equation (3.52) and (3.53)) at high altitude.

However, large dust grains have the large settling velocity. Such large dust grains settle
before they further grow. Therefore, the maximum dust size is determined by fragmentation
and sedimentation.

Figure 3 shows collisional velocities at r = 1 AU, z = 0 (midplane). At midplane, the
radial component of collisional velocity is much larger than the other components. Thus,

The maximum dust size agag s defined by V, — v, = Viae. For Epstein’s law agag 1 given by

2\/E ‘/frag Zg

mTe NUVE Pmat

(3.54)

Gfrag =

For Stokes’ law afag is given by

g = ([ B) " [ Vivos (3.55)
s ™ PmatTeol MUk

At midplane the maximum dust size is determined by fragmentation only. We show e in

figure 4. At r > 1 AU, gas drag law corresponds to Epstein’s law. Then, as r decreases (dust
grains migrate inward), ag., increases. However, at r <1 AU, gas drag law corresponds to

Stokes’ law. Then, afas decreases with r. At r >~ 1 AU, apae becomes the maximum value.

3.4 Dust motion in turbulent disks

Protoplanetary disks are thought to be turbulent, which needed for their vicous evolution
within typical disk lifetime of ~ 107 years. Turbulent gas motions would induce random
velocities of small dust grains that are embedded in the gas and also enhance their collisional
velocity. Within large eddies the friction forces from the gas lead to strongly correlated
velocities for neighboring grains, whereas small eddies cause uncorrelated grain motions. In
this section, we explain the model of turbulence in protoplanetery disks and estimate the

collisional velocity in turbulent disks.
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3.4.1 Homogeneous isotropic turbulence

We assume that turbulent motion is homogeneous and isotoropic in portoplanetary
disks. Turbulent motion consists of various size of eddies.

The kinetic energy is transferred from the largest eddies to the smallest ones, the vis-
cosity of the disk gas becomes important only for the smallest eddies and the kinetic energy
is dissipated. Practically no energy dissipation occurs in larger eddies. To maintain the
turbulento motion, external energy sources continually supply energy to the large eddies.

In the small scale [ ([ < L), the eddies have a similarity law. The energy supply occurs
only for the largest eddies. The parameters that determine the nature of the eddies are
the energy supply per unit mass per unit time of fluid € and the molecular viscosity v in
homogeneous and isotropic turbulence. The energy supply occurs only for the largest eddies.
Dimensional arguments (Tennekes and Lumley 1972) imply that the energy supply per unit
mass is of order

3
¢~ L (3.56)

where [ and vy, are the size and the velocity of the largest eddy. For eddies with a inter-
mediate scale, the effects of viscous is not important and thus, the velocity and the period
of such eddies expressed with the eddy size [ and the energy deposition rate e. The velocity

and the period of eddies are given by

v ~ (el)? (3.57)

€

1) ~ <z_2> . (3.58)

To express v; as the function of ¢;, we eliminate [ from the equation (3.57) and (3.58). Then,

the velocity of eddies is given by

[T

v~ (etg)? . (3.59)

Equation (3.59) is the usefull expression. The smallest eddies have the velocity, the length
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and the period given by

N

V; ~ (Vmol€)

(3.60)

(3.61)

¢
TN
<
m B
=3
N
N

f ~ <”m01> : (3.62)

where 1,0 is the molecular viscousity.

3.4.2 o model

The diffusion an the angular momentum transfer due to the turbulent motion are de-

scribed by the turbulent viscosity viup. The turbulent viscosity vy 1s given in the so-called

a model by (Shakura and Sunyaev 1973)
Vearb = acs H | (3.63)

« 1s non-dimensional small parameter determines the strongth of turbulence.

The most probable origin of disk turbulence is magneto-hydrodynamic (MHD) instabil-
ity. The strengest turbulence due to MHD instability makes o ~ 1072, In order to obtain
the expresion of the energy supply rate e to turbulence, we assume that the size L and the

velocity vy of the largest eddies are

vp, ~ oz%c57 L~at s (3.64)
k

respectively, as done in the previous studies (Schrapler and Henning 2004, Dullemond and

Dominik 2004). Substituting (3.64) into (3.56), the energy deposition rate € given by
€~ ozc?ﬂk . (3.65)
Substituting (3.65) into (3.59), the velocity of eddies is written as

vy~ Oé%(tlﬂk)%cs . (366)
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3.4.3 The collisional velocity of dust grains in turbulent disks

Next we describe the collisional velocity of dust grains in turbulent disks according
to Volk et al. (1980) and Weidenscilling (1984). Turbulence causes random motion of dust
grains with the velocity ~ vy. However, this random motion of them does not directly causes
their collisional velocities. If all dust grains are well coupled to the turbulent motion of gas
due to strong gas drag, the turbulence hardly enhance their collisional velocity. Hence,
to evaluate their collisional velocity, we examine relative motion of dust grains to gas in
turbulent motion.

The relative velocity is gorverned by the frictional time of dust grains given by tg;. =
1/(I'Q). As mentioned above, the turbulent motion consist of various size of eddies. The
period of the eddies ¢; and the velocity v; increase with the size [. Dust grains are tightly
coupled to large eddis with #; > tg;.. Thus, such eddies does not enhance the relative
velocity. For eddies with ¢; < tie, dust grains are not well coupled to the gas and such
eddies can enhance the relative velocity of the grains. Among such eddies, the large ones
(with #; ~ tgic) have the largest velocity and, thus, the relative velocity of grains with g is
approximately given by thier velocity v;. Substituting ¢; ~ #gic into equation (3.66), we have

for the relative velocity Vie s by

N

‘/rel,t ~ Oé% (th‘iCQk) Cs ™~ <%> ’ Cs. (367)

At z < H, T' is almost independent of the height 2 because the gas density is almost
independent of the height z. Thus, the velocity of this eddy is almost independent of the
height z. Small grains are well coupled to gas and have a very short frictional time. The

/2. Thus, for small dust grains with

periods of eddies have minimum value of ¢; ~ (mol/€)
tiic < Ui, there are not eddies to which such dust grains are decoupled. In such a case, dust

grains receive the accelaraion v;/t; and their relative velocity is given by

‘/rel,t ~ %tfric . (368)

K3
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Using the obtained V., the collisional velocity of grains is approximately given by (Vrght +
V2HVE+ V212 However, at high altitude, collisional velocity is given by (Vi + V2,
because V, and Vj, are much smaller than V. In Fig 5, we show the relative velocity Vi
at z = H for various values of o. Here, V. (solid line) is the vertical settling velocity. For
a = 1072, at size which the collisional velocity attain to the critical velocity (the hatched
region), Vier ¢ is larger than V.. Thus, the collisional fragmentation is determined by Vi ¢ for
such aa large a. On the other hand, for « = 1072, the collisional fragmentation is determined
by V..
We show the relative velocity Viery at 2 = 0 in Fig 6. Here, the solid line is the radial
collisional velocity in laminar disks. For a > 107*, when collisional fragmentation starts,
Vielt 1s larger than V.. Thus, the collisional fragmentation is determined by Ve ¢ for o = 1074

at the midplane.

3.4.4 Stirring-up of dust grains

The turbulence also stirs up dust grains, which presents them from settling. According
to Mizuno (1989), we estimate the height to which dust grains are stirred up. The stirring-up
due to the turbulence is described by the diffusion with the coefficient v4,. The diffusion

time (or stirring-up time) is given by

P 2? B 2? 1 2? (3.69)
it = Vewrh  acsH ol H? ' '
On the other hand, the sedimentation time tc. 1S given by
z I
loettle = — = — . 3.70
we = 7 = (3.70)

At the height to which dust grains are stirred up, zsr, the diffusion time (or stirring-up

time) g equals the sedimentation time tgere. Thus, we have for zg,

Z}} = (al)? . (3.71)
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Figure 5: The velocity of the turbulent eddy. We show the relative velocity Vi and V. at

r=1 AU, z = H. The solid line is the settling velocity V.. The long dashed line, the short
dashed line and the dotted line are Vi, for a = 107%,107 and 107", respectively. The

hatched region shows the critical velocity (1-10 m/s).
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Figure 7: The height to where dust grains are stirred up at r=1 AU. The solid line, the

dashed line, the dotted line and the dash-dotted line are z;, for a = 1072,107%,107%, 1077,

respectively.

Above z = zgyip, the teeile i1s shorter than t4i¢ and the sedimentation is dominant while the
stirring-up is dominant below zg;,. Takeuchi and Lin (2002) examined the height to which
dust grains are stirred up more exactly. Their result is almost consistent with our estimation
for the case of zgir < H We show the height zy;, in Fig 7. As turbulence becomes weak
(a decreases), zyir decreases. For a > 1072 dust grains with ¢ ~ 1 mm are stirred up to
z > 2H. Substituting equation (3.71) into (3.37), the velocity of dust grains at high altitude

is written as

1 >
Vg 2 Vo = — =" = — ( - > Veelt - (3.72)

I'r Zstir

Hence, at z = zgir, |V2]| = Vierr. This is because at z = zg,, the acceleration Vi ¢/tuic by the

coupling eddies equals the vertical component of the gravity of the centrals star, Q7z. The
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collisional velocity Vo is given by

Vil = (V2 + V2+V2+ VY2 (3.73)

rel,

At z >z, the collisional velocity is the same as in laminar disk:

1z
ol O —— . .74
Veol T (3.74)

At the region with z < 2y, where dust grains exist, Vi ¢ is comparable with or larger than
V.. The collisional velocity is given in turbulent disks by

1
Qa\ 2

Veor = <f> Cs (3.75)

In the case with zy, < H, the collisional velocity of equation (3.75) is independent of z,

because I' is independent of z at z < H.

4 The collisional velocity in the course of the dust

growth

The fragmentation occurs at the mutual collisions of grains, if the internal pressure
enhanced by the collision is larger than the tensile strength of the grains. This collisional
fragmentation would prevent the dust growth. In previous section, we obtained the collisional
velocity Veo(a,r, z) for various grain size at each place. In this section, we examine the
maximum size to which dust grains attain in the course of the dust growth and evaluate

their collisional velocity and the effects of collisional fragmentation.

4.1 The dust growth in laminar disk

In laminar disks, the collisional velocity is given by (3.35), (3.36), (3.37) and (3.45). We
examine the growth of dust grains and obtain the collisional velocity in the course of the

dust growth.
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4.1.1 Analytical estimation of dust growth

First, we analytically estimate the maximum size to which dust grains grow during their
settling. Safronov (1969) estimated the maximum size of the dust grains, assuming large
grains collide with only floating small grains and solving growth of large grains. Tanaka et
al. (2005) also estimated the maximum size in a simpler way. They assumed that after the
settling time of dust becomes equal to the growth time, dust grains settle without further

growth. The settling time teetee is given by equation (3.70). The growth time is given by

a 3
t row,z — . — _ — <5 4.1
& 7 a psnam,m‘/col 7 ( )

where n is the grain number density, p, is the sticking probability and o, , the collisional
cross section between grains with masses m and m’. Here, n is given by (4p,/m and o, =
m(2a)?. At high altitude, the collisional velocity is given by V.o = V.. Thus, Lerow,, 15 Written

as
Pmat a4 F
psCapy 2 U

tgrow,z —

(4.2)

The maximum size that the dust grains grow in the settling process dgettle 1s defined by

tsettle = lgrow,z- Thus Agettle 15 glVEN by

pst Zg
Ugettle = . 4.3
ttl \V/ 27'['6 Pmat ( )

This maximum size is almost consistent with that obtained by Safronov (1969).

4.1.2 Numerical calculation of dust growth

The above analytical estimate of the maximum size of settling grains would have some
error. To obtain more accurate maximum size. We perform numerical simulations fo dust
growth and settling in the same way as Tanaka et al. (2005). We briefly describe their basic
equation an numerical procedure. The statistical coagulation equation is used to describe

evolution of the mass distribution due to collisional growth. To describe dust settling, a
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vertical advection term is added to the coagulation equation. That is, the following equation

is used:

—n(m,z) + % [Vin(m, z)]

m
:—/ Kot om—mm(m', 2)n(m —m', z)dm’
0

— n(m,z)/ Koy (m', 2)dm’ (4.4)
0

where the kernel, K,/ ,,_../, is related to the coalescence rate between grains with masses m
and m —m’. In this equation, the first term on the right-hand side indicates the formation of
grains of the mass m by collisions between the smaller grains, and the second term represents
the consumption of grains with the mass m as a result of collisions with other grains. The
second term on the left-hand side is the advection term, which describes the vertical mass
transport. In equation (4.4), the advection term due to the radial mass transport is neglected
because it is effective only for relatively large grains that settle down to the dust layer.

The kernel K, _p 1s given by pso., AV, 0, where o, .0 1s the collisional cross
section between grains with masses m and m’, p, is the sticking probability, and AV}, .,/ is
the relative velocity between grains with m and m’. For dust grains, o, is equal to the
geometrical cross section. We assume spherical grains in this study. Then we obtain the cross
section 0, as wla(m) + a(m')]?, where a(m) is the radius of grains with m. Because we
neglected the radial drift of grains, equation (4.4) can be integrated at each radial position
independently.

We adopt the numerical method of Tanaka et al. (2005). Equation (4.4) is integrated
with respect to time with first-order accuracy. The change in the number density n(m, z) due
to coagulation which comes from two terms on the right-hand side of equation (4.4) calculated
with the fixed bin scheme (Nakagawa et al. 1981, Ohtsuki et al. 1990). The representative
masses, mg, of the smallest six bins are set to be kmg (k < 6). The larger mass bins are spaced

logarithmically with a multiplication factor 1.15 (i.e., mj = 1.15my_1). The change due to
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the advection term which comes from the second term on the left-hand side. To calculate it
accurately and stably, we used the spatially third-order MUSCL-type (Monotonic Upwind
Scheme for Conservation Law-type) scheme developed by van Leer (1977).

As an initial condition for numerical calculations, all grains have the radius of 0.1pm ini-
tially. We assume the dust-to-gas ratio is uniform initially. The density and the temperature
of the disk are not varied with time during numerical simulations for simplicity.

In the numerical integration of equation (4.4), the z-axis from z = 0 to z = 2.5v/2H is
divided into 251 equally spaced grids at each radial position. As for the coordinate of the
grain mass, we divide it into 500 discrete fixed mass bins. The minimum mass bin is that of
grains with the radius of 0.1 ym, and its representative mass, mg, is 47 pmae(0.1pm)?/3.

We show the obtained mass distribution at » = 1AU and z = H in Figure 8. At first
(t < 150yr), the size distribution of dust grains has one peak. In this stage, the peak size
of the distribution increases with time (i.e., grains grow) and the settling is negligible. At
t=150yr, on the other hand, the size distribution has two peaks. The left peak (at a smaller)
indicates that dust grains which grow at z = H. The right peak (at larger) indicates that
dust grains settling from the higher level (z > H). The large dust grains settle earlier than
the small ones. At t=300yr, the peak size decreases. This is because large grains settle down
and only the smaller ones remains at z = H. Thus, when the size distribution has two peaks,
the dust size becomes maximum. In the numerical results, we define the maximum size by
the left peak size of the distribution.

Figure 9 shows the analytical results (solid line) and the numerical results (points) of
dgettle ab "=1AU. The numerical results shows that the maximum size depends on z/H and
that dust grains further grow during the settling stage. This is because the density of dust
grains is enhanced at the lower layer (z ~ 0.1H). The numerical results agree well with
the analytical results at lower layer. Thus, the collision rate is large and the growth time

is short at lower layer. The sedimentation time is almost independent of z/H. Thus, the
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Figure 8: Time evolution of grains size distributions at » = 1 AU,z = H. The solid line,

the dashed line, the dashed-dotted line and the dotted line are the size distribution of dust

grains in ¢ = 100 yr, ¢ = 150 yr, { = 300 yr and ¢t = 500 yr ,respectivsely.
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Figure 10: The ratio of numerical results @getienum to analyrical estimations dgeggie ana- 1The

solid line, the dashed line and the dotted line are @settie num/@settle.ana in ¥ = 1 AU, r =8 AU

and r = 128 AU respectively.
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maximum size that the dust grains grow agee 1s large at lower layer. The ratio of the
numerical result @gegiie num to the analytical one agetie,ana 18 shown in Figure 10. This ratio is
almost independent of the distance from the central star r.

We also examine agae, through the numerical calculation. We assume that when the
collisional velocity V.o is larger than Vi, dust grains do not grow (the sizes do not change)
in the collision. We show the obtained mass distribution at r = 1AU and z = H for
Viol = Virag In Figure 11. At first (¢ < 300yr), the peak size of the distribution increases
with time and the settling is negligible. At {=500yr, the peak size decreases. This is because
large grains settle down and only the smaller ones remains at z = H. Thus, the peak size
has the maximum value when the peak size starts to decrease. In the numerical results, we
define the maximum size by the peak size of the distribution (~ 1 mm). The growth of
dust grains in the fragmentation case has same tendency of the non-fragmentation case (see
Figure 8 and 11). However, the growth time in the fragmentation case is larger than one in
the non-fragmentation case. Thus, the maximum dust size is smaller than ones (e.g., @settle)
in the non-fragmentation case. Consequently, the settling time is also longer than one in the
non-fragmentation case. In this case, the dust growth stops at z = H before dust grains
start to settle at higher altitude (z < H). Thus, the dust growth at z = H makes a peak
before the dust settling at higher altitude makes a peak. Then, because two peak sizes are
comparable, the size distribution has only one peak. Figure 4 shows the numerical results
and the analytical estimation of agag. The ratio of analytical estimations to numerical results

is 0.5 — 2. The analytical estimations are consistent with the numerical results.

4.1.3 The effects of collisional fragmentation on dust growth and settling

Finally, we examine where collisional fragmentation occurs at high altitude. When dust
grains collide each other, if the pressure due to the collision is larger than the tensile strength,

the collisional fragmentation occurs. That is, when the collisional velocity V., is larger than
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Figure 11: Time evolution of grains size distributions for Viae = 1 m/sat r =1 AU,z = H.

The solid line, the dashed line, the dashed-dotted line and the dotted line are the size

distribution of dust grains in ¢t = 100 yr, ¢ = 150 yr, ¢ = 300 yr and ¢ = 500 yr ,respectivsely.
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Figure 12: The solid line and the points are the analytical estimation and the numerical

results of apag for Vi, = 0.1m/s at r = 1 AU | respectively.
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Figure 13: The maximum dust size Ggrag and aeerrie at 2 = H and r=1 AU. The solid line is

Asetle- Lhe dashed line is agag for Vi = 1m/s.

the critical velocity Vivag.

As dust grains grow, the velocity increases. Thus, the growth of the large dust grains
is prevented by collisional fragmentation. However, large dust grains have the large settling
velocity. Dust grains with a@ > ageeq10 settle before they futher grow. Thus, if agetire 1s smaller
than agrag, collisional fragmentation does not occur and the maximum dust size is determined
by dsettle. On the other hand, when aga, is smaller than agele, collisional fragmentation
occurs.

We show afae and agegee in Figure 13. At inner region (r < 1AU), apag is larger than
Asettle- Lhus, the maximum dust size is determined by collisional fragmentation at inner
region. On the other hand, at outer region (r 2 1AU), afag is smaller than agegee. Thus, the

maximum dust size is determined by sedimenation at outer region. In another way, if the
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Figure 14: The collisional velocity for ¢ = agett1e at 2 = H. The solid line is the collisional
velocity for ¢ = @eetrie at 2 = H. The belt shows the critical velocity Vgae. The critical
velocity is 1-10 m/s at r < 0.4 AU (H;O ice do not evaporate) and it is 0.1-1 m/s at

r 2 0.4 AU (H,O ice evaporate).

collisional velocity of dust grains with a = agett1e 1 larger than the critical velocity, collisional
fragmentation occurs.
The collisional velocities of dust grains with ¢ = aeetrie at high altitude (z = H) are

written as follows:

For Epstein’s law (dsettle < %lg), the collisional velocity is given by

m
‘/col — _\/gpsgdcs . (45)

For Stokes’ law (@settle > %lg), the collisional velocity is given by

1 Ucol(pséadzg)2

‘/CO = - Cs .
: vV 727’[’6 ,umupmatH

(4.6)
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For R > 100 the collisional velocity is given by

8ps§d
col = A/ = s - 4.
Vl 3CDC ( 7)

This collisional velocity depends on the dust-to-gas ratio (;. The gas drag force is propor-

tional to gas density p,. The maximum dust size d@geq1e 1s proportional to dust density py.
The collisional velocity depends on the gas drag force and the maximum dust size agegtie-
Thus, the collisional velocity of the maximum dust grain depends on the dust-to-gas ratio
Cq. This collisional velocity depends on the dust-to-gas ratio (; and the sound speed c¢;.
Thus, the disk model dependence of our results is only the dust-to-gas ratio (; and the
sound speed ¢;. We show the collisional velocity with @ = ageiie in Figure 14. At r < 0.4 AU
(T < 150 K) H30 ice do not evaporate and the surface of dust grains is HyO ice. Thus, the
tensile strength is large and the critical velocity is large. In this region the critical velocity
is Virag = 1 — 10 m/s. On the other hand, at r > 0.4 AU (7" > 150 K) H;O ice evaporate
and the surface of dust grains is Si03. Thus, the tensile strength is small and the critical
velocity is small. In this region the critical velocity is Viae = 0.3 — 1 m/s. At inner region
(r < 1AU), the collisional velocity is larger than the critical velocity. At high alititude
(2 = H), collisional fragmentation occurs at inner region (r < 1AU) only.

Finally, we examine the effects of collisional fragmentation on dust growth and settling.
The maximum dust size is determined by dgettle and agag in the course of the dust settling.

Figure 15 shows asegiie (solid line) and aga, (dashed line) at 1 AU. In Figure 15, agag is
comparable with agetee- Thus, collisional fragmentation does not occur in the course of the
dust settling at r =1 AU. On contrast, Figure 16 shows .., (solid line) and agee (dashed
line) at r = 0.5 AU. At high altitude (z 2 H), dgetite is smaller than agae. Then, dust grains
grow along asepie(2) (dashed line). After dgerile = @frag, collisional fragmentation occurs and
the dust growth stops. However, as dust grains settle (z decreases), the collisional velocity
(the settling velocity) decreases. Then dust grains can grow. Dust grains settle and grow

along agpag(z) (solid line). In the course of the dust settling, collisional fragmentation occurs
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at inner region. At near the midplane (z < 0.1 H), dag is almost independent of z. Then
the dust growth stops. That reason is that the collisional velocity is given by the radial
velocity V, and it is almost independent of z. The height where a4, saturates is consistent
with the height where is defined by V. = V. (equation (3.51)). After dust grains settle below

2z~ 0.1 H, dust grains settle without further grow.

4.2 The effects of collisional fragmentation on dust growth in tur-

bulent disks

In this section, we examine the effects of collisional fragmentation on dust growth and
settling in turbulent disks. In laminar disks, as dust grains settle, the collisional velocity
decreases and agag increases. IN turbulent disks, at z > 2y, the stirring-up is not effective
and the collisional velocity is given by equation (3.37) or (3.35) as laminar disks, when dust
grains settle down to z = zgi, they cannot settle more. We show aga, and zgi in Fig.
17. The damping time of turbulence would be much longer than the dust sedimentation
timescale. Thus, dust grains settle very slowly and grow along dgag(z). The size asele
is meaningless in this case. At z < zy, the collisional velocity is given by Vi (equation
(3.75)). However, collisional fragmentation mainly occurs at z < zgi, because Vi ¢ is smaller

than V(2 = 2.

5 Summary and Discussion

In this paper, we clarified the region where collisional fragmentation occurs in laminar
disks or turbulent disks and examine the effects of collisional fragmentation on dust growth.

Our results are summarized as follows:

1. Collisional fragmentation occurs, when the internal pressure P., enhanced by the

collision is larger than the tensile strength Y of the grains. Such a high pressure is
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Figure 15: The settling and growth of dust grains at * = 1 AU in the laminar disk. The

solid line is afag for Viae = 1m/s and the dashed line is ageppe at 7 = 1 AU.
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Figure 16: The settling and growth of dust grains at » = 0.5 AU in the laminar disk. The

solid line is afag for Visae = 1m/s and the dashed line agepie at ¥ = 0.5 AU.
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Figure 17: The settling and growth of dust grains at » = 1 AU in the turbulent disk. The
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realized when the collisional velocity is larger than a certain critical velocity determined
by the strength Y. The strength of dust grains is governed by an adhesion force between
monomers. Using the JKR theory and assuming compact dust grains consisted of sub-
micron monomers, we estimated the tensile strength Y (equation (2.2) or Sirono and
Greenberg 2000) and estimated the critical velocity Vi, (equation (2.6)). That is, the
critical velocity is 3 m/s for HyO grains and 0.3 m/s for SiO, grains. Detail numerical
simulations of aggregate collision done by Dominik and Tielens (1997) and the collision
experiments by Blum and Wurm (2000) indicate that the critical velocity is larger than
our estimate by the factor 3. On the other hand, if porous grains are consisted, the
critical velocity would be much smaller than our estimation. To fix the critical velocity

for fragmentation more accurately, further investigation on grain structure is needed.

2. The collisional velocities between grains are approximately given by the relative
velocities between grains and gas, which increases with the grain mass as long as thier
frictional time is smaller than the Keplerian period. In the course of dust growth,
the collisional velocity increases. If the collisional velocity attains to the critical one,

collisional fragmentation occurs and prevents further dust growth.

3. In laminar disks, the collisional velocity V.. is given by the settling velocity V.
(equation (3.37)) during dust settling and by the radial V, near the midplane of disks.
Using this collisional velocity, we also obtained the dust size, apag(#) (equation (3.54),
(3.55)), for which V.o equals the critical velocity. On the other hand, we also obtain
the maximum size to which grains grow before settling, dsette(z), analytically or nu-
merically (equation (4.3)). If the critical size for fragmentation af,, is smaller than
Asettle, Tragmentation inhibits dust growth during settling. This condition is satisfied
at 7 <1 AU in the minimum-mass nebula disk around a solar type star. As dust grains

settle, the collsional velocity decreases and they can grow more (see figure 16).
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At the midplane, the collisional velocity is given by the radial velocity V, (equation
(3.35)). The radial velocity attains its maximum value at the size with I'(a) = 1 (see
figure 3). The maximum velocity is given by nvy ~ 20 m/s for Kusaka model and 50
m/s for Hayashi model, which is larger than the critical velocity (< 10 m/s). Thus,
collisional fragmentation wouled inhibit dust growth at the midplane of the whole disks
and the maximum dust size is given by agae(z = 0) (equation (3.54) or (3.55)). The
ratio of Viyag/n Vi is very important in the dust growth and planetesimal formation. The
uncertainly of Ve still remains. If Viag is larger than nVj, dust grains can grow more
and they are able to be decoupled with the disk gas, which would help the gravitational

instability of dust layer.

4.  For turbulent disks, we considered homogneous and isotropic turbulence and adopted
the so-called a-model. There are two effects of turbulence on the dust growth and
settling. One is the enhancement of the collisional velocity due to turbulent motion.
The other one is the vertical diffusion of dust grains. In strong turbulent disks (o >
1072), the collisional velocity is given by Via; (equaiton (3.67)) while in weak turbulent
disks (o < 1072), the collisional velocity is given by V, or V, as laminar disks. Dust
grains are stirring up to z = zgr (equaiton (3.71)) in turbulent disks. At a higher level
(z > Zatir), grains settle down and the collisional velocity is given by V., (equation (3.37))
as laminar disks. On the other hand, grains cannot remain at z < zg;. The settling
velocity is comparable to Ve, at z ~ zgi. The maximum dust size to which dust
grains can grow is given by dgag(z = Zstir). As disk turbulence damps (o decreases),

Zstir and the collisional velocity decreases and dust grains gradually settle and grow

(see figure 17).

Collisional fragmentation also confines dust migration in the disks. This is because the
relative velocity of dust grains to the disk gas depends on the dust size and the dust size

is confined by collisional fragmentation. As a result, the relative velocity of grains to the
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disk gas is limited to the critical velocity for fragmentation Vg, which is not depending
on the disk model but only on the properties of dust grains. It should be noticed that this
limitation on dust migration works only when the collisional frequency between grains is so
high that the collisional fragmentation can regulate the dust size.

For example, we can estimate the radial migration time of dust grains in gas disks ?s
to be r/Viag. If we adopt Viae = 3 m/s, the radial migration time is obtained as 2 x 10° yr.
Because the collisional time of grains in the minimum-mass nebula disk is much shorter than
tmig, the collisional fragmentation is frequent enough to regulate the dust size. Hence, in
this time scale of ¢i,, small grains created by fragmentation also remain in whole disk. The
critical velcoity Viae can be much larger than the above value. Some authors obtained mush
shorter dust radial migration time, considering the meter-sized particle (e.g., Cuzzi et al
2004). Such a rapid migration is excluded if collisional frgmentation is taken into account.

Another example is the concentration of dust grains trapped in turbulent eddies. Some
authors suggested that dust migration in anticyclonic eddies enhances that dust density and
could even trigger a local gravitational instability (e.g., Barge and Sommeria 1995). Tanga
et al (1996) showed that large-scale vortices may be naturally generated in a differentially
rotating solar nebula. The dust-trapping efficiency of vortices was explored analytically by
Chavanis (2000) for vortices of arbitrary aspect ratio. Johansen et al. (2004) performed the
simulations of dust-trapping eddies. According to their result, the lifetime is a few times as
long as the Keplerian period when the eddy size is the disk scale height. In most studies, the
lifetime of eddies is estimated to be order of the Keplerian period and a very high migration
velocity of dust is needed to pile up dust grains within the lifetime. Such a rapid migration
is also excluded because of collisional fragmentation. In order to concentrate the dust grains
under the limitation of collisional fragmentation, eddies with much longer lifetime is needed.

As mentioned above, collisional fragmentation affects the evolution of dust grains (e.g.,

the dust growth, settling and migration). Thus, the critical velocity Vi is the very im-
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portant parameter. However, there is uncertainty the critical velocity. In this study, we
considered compact spherical dust grains (aggregates). However, coagulation of dust grains
produce aggregates that have highly irregular shapes and high porosity (Meakin and Donn
1988, Weidenschilling and Cuzzi 1993). Wurm and Blum (1998) experimentally studied the
mass evolution of a dust grains embedded in a rarefied turbulent gas environment. Accord-
ing to their results, for ¢ < 1 pm and Vo < 0.1 m/s the dominant growth process is due
to collisions between aggregates of very similar sizes. This process produces high porosity
aggregates. Blum and Scrapler (2004) measured the tensile strength of high-porosity dust
aggregates. The obtained tensile strength is ~1000 Pa and it is much smaller than the an-
alytical estimated value ~ 30000 Pa. Thus, the critical velocity may be much smaller than
the estimated value 0.3 m/s. On the other hand, the velocity for high porosity aggregates is
also different from the velocity for compact aggregates because the ratio of mass to the cross
section is not proportional to the radius. Consequently, the size dependence of the velocity
for high porosity aggregates is different from ones for compact aggregates. To investigate the
growth of high porosity aggregates, it is important that clarify the structure of the aggregates

(e.g., the strength and the relation between the mass and the radius).
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